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In this paper, I create a model of school choice with endogenous selection. I show
that a general model of selection is identified without any additional assumptions
from the standard school choice framework. I perform a monte carlo to show
that this model pins down the correct parameter values, while not incorporating
selection may severely bias the estimates. I also present a potential counterfactual
where an alternative is removed, and the model with selection is able to correctly
predict the results. Incorporating selection is essential for school choice research,
and this paper provides a framework to study it.

One of the most critical decisions many families face is determining the best school for their

children. The elementary, middle, and high school experience can set students on very different

life trajectories. Parents may invest a lot of resources researching schools, and an entire industry

exists to help families navigate this process. The goal of a school district is to provide its families

more options, improve existing options, and make the school matching process satisfactory for the

families that participate.

The participation decision, however, is often overlooked by school districts. When only a subset

of the population takes part in a school choice mechanism, the analysis and recommendations

might be heavily biased. While school districts aim to improve schools and see enrollment rise,

this bias might lead to worse results. Accounting for selection is very important yet it is often

ignored in school choice research.

Matching, and in particular assigning students to schools, has a rich economic literature.

Gale and Shapley’s 1962 matching paper on marriage formalized the Deferred Acceptance (DA)

algorithm. The DA algorithm has become one of the most popular methods to match students to

schools. Pure DA is attractive because it is a strategy-proof mechanism in that students have no

incentive to misreport their true preferences.

A main contribution of this work will be addressing endogenous entry in school choice. I will

use the deferred acceptance algorithm for it’s popular and simple truth-telling qualities, yet this
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work is generalizable beyond the simple DA framework.

The matching literature recognizes that students might not apply to schools because they take

into account the probability of attending, and furthermore it finds instances where students do

not apply everywhere they prefer. Under the same logic, a natural extension is that students

do not enter the mechanism because they believe they have a zero percent chance of admission

or the value from the outside option is better than all options within the mechanism. These

non-participating students exist outside of the mechanism, yet they should still be accounted for

when a school district makes decisions. Any counterfactual that affects a student’s (perceived)

probability of admission or (perceived) utility from any of the options within the mechanism

might induce entry into the mechanism.

Entry in the school choice literature has largely been ignored. Entry will change the set of

students actually matched which might have important welfare implications. There are examples

of entry/exit in matching mechanisms unraveling markets. In the gastroenterology resident

matching an unanticipated shock to the number of participants made the mechanism unravel.1

One of the main findings of this paper is that even under simple selection environments, the

results can be heavily biased. This bias carries through to counterfactuals, which may predict large

discrepancies from the true results of regime change.

The remainder of the paper is organized as follows. In Section I, I present an illustrative model

of school choice with endogenous selection which I use in section II to discuss briefly the relative

advantages and limitations of different approaches to the empirical study of school choice and

selection models in general. In Section III, I discuss the identification and estimation of the model,

and I apply those techniques with a monte carlo study and policy experiments in section IV.

Section V contains future extensions to the model. Concluding remarks are included in Section VI.

More technical details on estimating the model, generating the monte carlo study, and adapting

the model to different primitives are contained in the appendix.

I. Model

This model of school choice includes both endogenous selection and correlation between the

selection decision and the observed outcome.
1See McKinney, Niederle, Roth (2005).
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This is a two stage problem. In the first stage students draw a cost shock and decide whether

to enter the mechanism or to take their safety school. In the second stage the students who entered

the mechanism draw school related utility shocks, where school utility is correlated with the cost

draw, and they submit rank ordered lists.

In this model the student beliefs are exogenously determined. The next version of this model

will be an equilibrium model with endogenous beliefs, but for the time being any beliefs can be

entered into the model.

I. Second Stage

In the second stage we will only observe the students who decide to submit a rank order list. Each

student carries their cost shock ηi from the first period, where ηi is drawn from Fη(·). Let S be the

set of available schools.

The utility from enrolling in school s ∈ S is denoted as follows:

Uis = uis + ηiβη,s + εi,s, (1)

where uis denotes the observable utility,

uis = β0,s + Xisβx + HiβH,s. (2)

The β0,s acts as a school specific intercept, so this will encompass things that only vary by

school, such as percent male. The observable covariates Xis vary by student by school. This

includes data such as distance from home to school. The final covariate, Hi, denotes student

varying characteristics, such as gender or ethnicity. There is a school specific coefficient for each of

the H covariates, so the model is general in that particular student attributes might give higher

utility at different schools. The cost shock, ηi, is an example of something that only varies by

student and it is correlated with each school differently. The cost shock is unobserved to the

econometrician. Finally the student-school utility shock, εi,s, is drawn from Fε(·).

Once a student views all his school specific utility shocks in the second stage, he is tasked with

creating the list that he submits to the mechanism. The optimal list under the Gale-Shapely algo-
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rithm is truth-telling, which does not require the student to consider the admission probabilities.2

Assume there are only 4 schools. A student ranks schools as follows: 3 �i 2 �i 4 �i 1. The

probability of observing that ranking is equivalent to: Pr(U3 > U2 > U4 > U1).

This can be broken down into a product of conditional probabilities:

Pr(U3 > U2, U4, U1)× Pr(U2 > U4, U1|U3 > U2, U4, U1)×

...Pr(U4 > U1|U3 > U2, U4, U1; U2 > U4, U1).

II. First Stage

In the first stage, students must decide if they are going to apply to the mechanism. While the

students do not need to take into account admission probabilities in the Gale-Shapely deferred

acceptance algorithm, they will take admission probabilities into account in the decision to

participate.

A student will enter the mechanism if the expected value from paying the cost and entering

the mechanism is higher than the expected utility of the outside option. Let Ui0 denote the utility

of student i’s safety school. Let di = 1 denote that student i submits an application. I can express

an application as

di = 1 if EV(Xi, ηi)− ηi ≥ E[Ui0]

≡ EV(Xi, ηi)− ηi ≥ ui0 + βη,0ηi + E[εi,0]
(3)

where EV(Xi, ηi) is the expected utility from entering the mechanism which takes into account

admission probabilities in the mechanism. I discuss how to compute the EV(·) function in the

next subsection. The expectation on both sides of the inequality is in reference to the unobserved

school utility shocks.

If it were possible for the econometrician to view the ηi for each student i, then it would be

standard procedure to uncover the parameter estimates. However, because the ηi is unobserved,

it will require integrating it out, with complex integrals that require the use of simulation. The

estimation details are in the section III.
2Under a Gale-Shapely Deferred Acceptance algorithm, truth-telling is a weakly dominate strategy, and if the probability

of acceptance is strictly between 0 and 1, then truth-telling is strictly dominant. It is an simple extension to forgo the
truth-telling assumption in place of a stability assumption.
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III. Calculating the Expected Value Function

In this subsection I present a simple example that walks through calculation of the expected value

function. Given 3 options with respective utility δs + εs for s = {1, 2, 3}, and εs is drawn from

Fε(·).

Under guaranteed admission, I can calculate the expected value of entry by going through the

expected value of each option if it were chosen. Begin by looking over the range of ε such that

option 1 is chosen when the student is guaranteed admission to all schools:

Eε∈M1 [max
s

(δs + εi)] =∫ ∞

−∞
(δ1 + ε1)

[∫ δ1+ε1−δ2

−∞

∫ δ1+ε1−δ3

−∞
f ε(ε1, ε2, ε3)dε3dε2

]
dε1

(4)

The more interesting context, however, is that the student is not guaranteed admission. Taking

into account non-trivial admission probabilities, the expected latent utility will be strictly less than

the expected latent utility under guaranteed admission. If we need to take admission probabilities

into account, then equation (4) becomes

Eε∈M1 [max
i

(δs + εs)] =

∞∫
−∞

 δ1+ε1−δ2∫
−∞

δ2+ε2−δ3∫
−∞

[
P1(δ1 + ε1) + (1− P1)P2(δ2 + ε2) ...

+(1− P1)(1− P2)P3(δ3 + ε3)

]
f ε(ε1, ε2, ε3)dε3dε2...

+

δ1+ε1−δ3∫
−∞

δ3+ε3−δ2∫
−∞

[
P1(δ1 + ε1) + (1− P1)P3(δ3 + ε3)...

+(1− P1)(1− P3)P2(δ2 + ε2)

]
f ε(ε1, ε2, ε3)dε2dε3

)
dε1

, (5)

where Ps is the probability of being accepted by alternative s. When the probability is less than

one, then we are also concerned with the 2nd and 3rd option at every point. The integral expands

with every additional option, and the more possible options, the more complicated it becomes.

There is no simple closed form, and the expected value must be simulated. See appendix section
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VII for details.

II. Departure from Previous Literature

This work touches on two important strands of economics, school choice and selection models.

Much of the school choice literature focuses on the implication from switching mechanisms, in

particular from a Boston mechanism to a Gale-Shapely algorithm. Other research uses a constant

mechanism, but studies the effects of changing specific aspects, such as priority scores or the

number of schools a student can apply to.

This paper focuses on a problem that has not been adequately addressed in the literature:

determining the effects of an application process when only a subset of students apply, while

taking the entire student population into consideration. This essentially creates endogenous entry

in school choice.

The school choice literature has largely ignored the selection aspect. The analysis tends to

focus on districts that do not have many outside options available to their students, such as the

school system in Barcelona, whose mechanism includes 96% of all Barcelona schools (Casalmiglia,

Fu, Guell 2014), or the school sorting in Beijing which declared that “outside options were

not relevant" (He 2014). In many papers that discuss American school districts such as New

York, Cambridge, and Boston, the individuals who enter matching mechanisms and those who

decide not to enter are different in both observable and unobservable ways. Few papers discuss

entry into a school matching mechanism. Among them Ferreyra and Kosenok (2014), discuss

students’ decisions to apply to charter schools through charter school location decisions, and

Mehta (2014) describes a model of charter school input decisions. The most relevant work to this

project is Kapor, Neilson, Zimmerman (2016), yet they use the model to explain achievement and

assume the students know the school utility shocks before entering the mechanism. I relax the

full information framework and allow for correlation between the cost and the school utilities.

Additionally Walters (2012) estimated a flexible demand-side model of charter school application

and attendance decisions. However, that model does not use the decision to apply and the ranked

list of schools as the outcomes, but rather student achievement, as a function of school choice, is

the outcome of interest. Those models requires data on student achievement, assumptions on the

the achievement production function, and the assumption that achievement scores are a major
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outcome that determines student selection. My model is more general, not requiring any special

covariates like achievement scores yet it has the ability to encompass them.

Applying selection techniques to a school choice mechanism is not trivial. The school choice

context not only includes multiple, correlated alternatives and censored observations, but it also

contains a discrete outcome.3 In school choice we have no such outcome that is so inextricably

linked to utility as wage for labor selection. Only the decision to apply and the rank ordered

list are outcomes. Standard selection techniques, such as a control function approach, are not

applicable with this type of data.

If selective entry is not accounted for, then models are under the assumption that everyone

who can participate in a market does participate. However, that is the wrong way to look at it, as

individuals make choices based on their unobservables. This means that observed relationships, or

matches, should be viewed through a lens of endogenous decision making and not an exogenous

relationship. Ignoring selection would bias the coefficient estimates and the counterfactual

predictions might be very far from reality.

Selective entry can have important effects in matching markets. By incorrectly assuming

that everyone is participating in a market, any dynamics of markets growing or shrinking are

ignored. Muriel and Roth (2003) and McKinney, Niederle, Roth (2005) examine the unravelling of

the gastroenterology resident matching in 1997 due to an unanticipated shock to the number of

applicants. A more general model which endogenizes selection into the specific gastroenterology

market would better encompass market size and the decisions of those that self-select into the

market.

There is also a growing body of work of endogenous entry and self-selection in the auction

literature. The decision to enter and which auction to chose among a menu of auctions has

important considerations in maximizing revenue. There is empirical evidence that individuals

self-select into different types of auctions by their unobserved value, and bidding behavior can be

rationalized through auctions with entry.4

Finally, recent work on non-parametric identification of school choice models attempts to relax

the parametric assumptions that has dominated the literature.5 In the monte carlo simulation in

3For examples of selection models which include multivariate choices see Yen (2005), and for censored data see Lin and
Yen (2006).

4See Engelbrecht-Wiggans, 1993; Smith and Levin, 1996, 2002; Pevnitskaya, 2004, and Palfrey and Pevnitskaya, 2008 for
this literature.

5Agarwal and Somaini 2014 is an example of an non-parametric approach.



Michael Shashoua • 8

section IV, I use the same parametric specification to estimate as the true data generating process,

but ignoring selection will bias the estimates. The next section shows how accounting for selection

does not require any additional normalizations beyond those of the standard multinomial logit

model.

III. Identification and Estimation

I. Identification of School Choice with Endogenous Selection

The discussion for identification of this model follows the identification strategy of the Tobit II

models from Amemiya (1985).

Tobit II models are of the form:

y2i =

 y∗2i if y∗1i ≥ 0

0 if y∗1i < 0

where the outcome, y∗2i is observed if y∗1i ≥ 0. This can be further generalized to

y2i =

 y∗2i if y∗1i ≥ 0 and y∗2i ≥ 0

0 otherwise

Which is sometimes called the “double hurdle" (Cragg 1971) as it requires y∗1i ≥ 0 and conditional

on that, y∗2i ≥ 0. Consider for example,

y1i = z′iβ + εi

y2i = x′iγ + νi.

To identify this model, given any structure of correlation between the shocks, an exclusion

restriction is generally made of the form that there exist some variable in z that is not in x, that is

something that affects the propensity to be observed while not changing the underlying outcome

observed.

In a parametric model which specifies the distributions of the unobservables, a control function

approach can be used to identify the model. Under normality, the inverse mills ratio has

nonlinearities which are key to identifying the model. The body of the inverse mills ratio is



Michael Shashoua • 9

linear, but the tails introduce nonlinearities, so a condition for identification in the absence of

an exclusion restriction is that at least one of the x’s displays sufficient variation to induce tail

behavior in the inverse mills ratio.

The model presented in this paper does not require any exclusion restriction z for identification.

The key to identification in this framework is the nonlinearities in the expected value function.6

Furthermore, the probabilities of acceptance, while providing more variation in the expected value

function, are also not necessary.

To walk through the identification argument, I will begin with the most basic setting in which

the utility from being matched to a certain school is Us = βη,sη + εs. I will apply the following

parametric specification to the errors, η ∼ N(µη , ση) and εs is distributed type 1 extreme value

(T1EV). Interestingly, this model does not require any normalizations beyond the T1EV (location

and scale normalizations) of the school specific shocks and the location of some of the coefficients.

If there is only one school and the student is guaranteed admission, then the decision to enter the

mechanism is:
di = 1 if EV(ηi)− ηi ≥ βη,0ηi + E[εi,0]

≡ βη,0ηi + γ− ηi ≥ βη,0ηi + γ

≡ −ηi ≥ 0

, (6)

where γ is the expectation of a T1EV random variable, known as Euler’s constant. It is clear

that with only 1 school and guaranteed admission, we have no hope of pinning down the variance

of η. Even with an exclusion restriction that only affects the probability of entry but not the utility

from the match, we cannot pin down the scale.7 If we add another school to the setting with

admission probability 1, then the entry decision becomes:

di = 1 if EV(ηi)− ηi ≥ βη,0ηi + E[εi,0]

≡ log(exp(βη,0ηi) + exp(βη,1ηi)) + γ− ηi ≥ βη,0ηi + γ

≡ log(exp(βη,0ηi) + exp(βη,1ηi))− ηi ≥ βη,0ηi

(7)

The only requirement for identification in this model is that the βη,s coefficients are not all

equal. Under those assumptions, I can identify both the location and scale of η. In terms of the

6See section V for details on incorporating an exclusion restriction into the model.
7If we had some exclusion restriction Z, then equation (6) would be di = 1 if Zi βz − ηi ≥ 0, which is observational

equivalent to Zi
βz
c −

ηi
c ≥ 0.
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βη coefficients, the scale is identified but not the location. Because of this, one of the coefficients

can be set to zero.8 The only thing that matters for these coefficients is their value relative to each

other. In Figure (1) I show how the nonlinearities enter by graphing the function

f (η) = log(exp(βη,0η) + exp(βη,1η))− η − βη,0η,

at different levels of βη,1. I set βη,0 = 0 and I vary βη,1 from -5 to 5, where the lighter lines are

lower values of βη,1. The cost shock η varies from -2 to 2. The thick black line is when βη,0 = βη,1,

which makes this a linear function in η.

Figure 1: The Decision to Enter the Mechanism, Varying the β Values

For identification, a requirement is that we observe some people not participating, either from

the realization of the cost shock or their covariates, which in Figure (1) is denoted as a realized

8This also applies to the βH,s coefficients for each H variable that only varies by individual and not by alternative. See
section VI in the appendix for details and the proof.
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value below zero. This is essentially stating that if we have individuals with the same observable

characteristics, some choose to enter the mechanism and some remain out of it. Otherwise selection

decisions could entirely be attributed to selection on observables.

Different probabilities of admission also affect the value function. As an example, in Figure (2)

I will plot the following function,

f (η) = EV(η)− η − βη,0η − γ,

with the probability of acceptance to school 1 ranging from 1 to 0, with lighter colors representing

the higher probability. Again, the thick black line is when the probability of admission to school 2

is zero. I hold βη,0 = 0 and βη,1 = −5.

Figure 2: The Decision to Enter the Mechanism, Varying the Admission Probability

As the probability of admission to the second option gets closer to zero, the value function
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becomes more and more linear. It should be clear that we can pin down the location and scale of

η as long as 1) η has some values in the nonlinear region, 2) some people choose not to enter the

mechanism, and 3) there are non-degenerate admission probabilities for at least one school beside

the safety school.

As more schools are added the function becomes even more nonlinear. Through the non-

linearities and the varying covariates among the individual students, the η parameters can be

identified.

If the distribution of η is identified, and indeed if η were observed in the data, the probability

of observing a list becomes the standard multinomial logit. I now quickly recap the identification

and interpretation of parameters from multinomial logit models.

In logit models, individuals only care about the differences in utility across alternatives. If

something boosts the utility level of all alternatives the same amount, then it cannot be used to

explain decision making behavior. On the other hand, if the covariates vary by individual by

alternative, then their coefficients are fully identified. If covariates vary only by individual, and it

affects the utility of each alternative differently, then the scale of those parameters is identified but

not the location. It is without loss of generality to normalize one of alternative’s coefficients to

zero. Similarly, anything that varies by alternative but not by individual is indistinguishable from

a school fixed effect. These covariates should be left out of estimation, as the parameter estimates

are observationally equivalent to a fixed effect, so it is only necessary to include alternative specific

intercepts and set one of them equal to zero. Finally, anything that does not vary with alternatives

nor individuals will not be identified and should be left out of the model.

Interpretation of the parameters of a logit model requires taking into account the normalizations

for specific covariates. For covariates that vary by individual by alternative, the sign of a parameter

can be interpreted as the direction of influence of its covariate. However, the absolute magnitude of

the parameters is interpretable only through an odds ratio. For intercepts and covariates that only

vary by individual, there is a required normalization so the sign of the parameter is completely

arbitrary and just the utility scale between the different alternatives is important. Again, the utility

difference is not itself interpretable because it enters into an odds ratio.

A useful statistic is the marginal effect of an independent variable on choice probabilities,

common in the IO literature. It is also interesting to predict choice probabilities for a certain
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individual with specific covariate values, or to compute market share under counterfactual regimes.

Commonplace in school choice literature is to put all the variables in reference to the parameter

for distance to school. This makes an intuitive interpretation of the covariates in the form of

“willingness to travel." For settings in which there is a monetary cost that varies by school and

across individuals, a “willingness to pay" can also be used.

II. Calculating the Probability of Applying

The decision to apply is represented in equation (3). For a given Xi, it is possible to estimate the

EV(·) function through simulation.9 The probability of a student choosing to participate becomes:

Pr(di = 1|Xi) =
∫ ∞

−∞
1{EV(Xi, ηi)− ηi ≥ ui0 + βη,0ηi + γ}dFη(ηi). (8)

Even with ηi normally distributed, this has no closed form as it is not possible to pull η out

of all the terms. To simulate this probability, I draw ηj J times from the Fη(·) distribution and

average over them:

Pr(di = 1|Xi) =
1
J

J

∑
j=1

1{EV(Xi, ηj)− ηj ≥ ui0 + βη,0ηj + γ}. (9)

III. Probability of Observing a List `i

The T1EV school utility shocks provide a very convenient way to calculate application probabilities.

Conditional on the ηi, the likelihood of a certain ranking has a closed form solution, which is

generally referred to as an exploded logit. Returning to the example in section I, assume a student

ranks schools as follows: 3 �i 2 �i 4 �i 1.

Taking advantage of the IIA property of T1EV allows us to take the product of the unconditional

choice probabilities. The example above is expressed as:

exp{ui3 + βη,3ηi}
∑s′∈{1,2,3,4} exp{uis′ + βη,s′ηi}

×
exp{ui2 + βη,2ηi}

∑s′∈{1,2,4} exp{uis′ + βη,s′ηi}
×

exp{ui4 + βη,4ηi}
∑s′∈{1,4} exp{uis′ + βη,s′ηi}

.

9See appendix section VII for the calculation details of the EV(·) function.
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Ignoring selection, the probability of observing a list `i is,

Pr(`i|ηi) = ∏
s∈`i

exp{uis + βη,sηi}
∑

s′ :s�is′
exp{uis′ + βη,s′ηi}

, (10)

where s ∈ `i denotes that school s is ranked in the list by student i, and s′ : s �i s′ is the set of

schools s′ ranked at or below s by student i.

In equation (10), there was a simple closed form for the probability of a list `i conditional on

observing ηi. However, the econometrician does not observe ηi and it must be integrated out. It

is important to remember that not all values of ηi will lead to lists being observed, so we must

condition only on the ηi values that yield a list. Suppressing the conditioning on covariates Xi,

Pr(`i|di = 1) =
Pr(`i, di = 1)

Pr(di = 1)
,

where the numerator can go through different ηi values and calculate the exploded logit,

multiplied by the indicator if that value of η yields an application. The denominator is the value

from equation (8). Plugging this in gives

Pr(`i|di = 1) =

∫ ∞
−∞ 1{EV(Xi, ηi)− ηi ≥ ui0 + βη,0ηi + γ}

∏s∈`i

exp{uis+βη,sηi}
∑

s′ :s�i s′
exp{uis′+βη,s′ηi}

 dFη(ηi)∫ ∞
−∞ 1{EV(Xi, ηi)− ηi ≥ ui0 + βη,0ηi + γ}dFη(ηi)

Which we can simulate as before with a draw of ηj,

Pr(`i|di = 1) =

∑J
j=1 1{EV(Xi, ηj)− ηj ≥ ui0 + βη,0ηj + γ}

∏s∈`i

exp{uis+βη,sηj}
∑

s′ :s�i s′
exp{uis′+βη,s′ηj}


∑J

j′=1 1{EV(Xi, ηj′)− ηj′ ≥ ui0 + βη,0ηj′ + γ}
.

Let di = 1 denote the decision of individual i to apply and di = 0 denotes the decision to not

apply. The parameters we want to estimate are Θ = {βx, βη , βs, βH}, where the last three are

vectors of length |S| − 1, and Σ = {µη , ση}, which determine the distribution of η.10 The likelihood

10Recall that one of the parameters can be set to zero for covariates that do not vary by both alternative and individual.
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for i can be expressed as

Li(Θ, Σ) = Pr(di = 0)1{di=0}(Pr(di = 1)Pr(`i|di = 1)
)1{di=1},

where the simulated estimates of Pr(di = 0) and Pr(`i|di = 1) are used. The full simulated

likelihood over all individuals is simply the product across everyone in the data:

L(Θ, Σ) =
N

∏
i=1
Li(Θ, Σ).

IV. Monte Carlo and Policy Experiments

I. Monte Carlo

In this section, I use 3 schools and generate X variables that vary by individual and school. The

probability of acceptance to the schools are P1 = .2, P2 = 1, and P3 = .9, with further details on

the data generating process provided in section I of the appendix.

With an underlying DGP, I simulate the decisions for 1000 students, both the decision to apply

and, conditional on applying, a ranked order list. I then estimate the parameters and repeat

this 100 times, reporting RMSE, mean absolute error, the parameter estimates and the standard

deviation.

In addition, for each of the 100 simulations I will also estimate the parameters using a “naive"

approach under the belief that selection is not important. Two naive approaches will be estimated:

1) a model with just a βx coefficient, and 2) a model with both βx and school specific intercepts.

The naive parameters will be estimated from multinomial logit and just based on the application

lists provided. This ignores the students who did not enter, as the underlying logit is under the

assumption that selection is unimportant. I report the mean and standard deviation of these naive

parameters as well.

In Table 1 I present the results for this model. The model’s estimates are very close to the true

data generating process. Recall that βη,1, the alternative specific cost shock coefficient, has been

normalized to zero. The standard deviation is largest on the βη,3 parameter. In Figure (3) I graph

the density of the deviation from the truth of βη,3 across different levels of simulations. Even after

just 50 simulations, the values appear to cluster around the true parameter values.
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Table 1: Accounting for Selection

true mean std. dev l.q. med h.q. r.m.s.e m.a.e.
βX 3.00 3.012 0.426 2.745 2.963 3.223 0.424 0.318
βη,2 -0.30 -0.283 0.188 -0.403 -0.312 -0.166 0.188 0.146
βη,3 3.10 3.169 0.455 2.923 3.120 3.445 0.457 0.345
µη 0.50 0.504 0.111 0.424 0.513 0.586 0.110 0.089
ση 1.75 1.703 0.271 1.531 1.672 1.851 0.274 0.219

The table reports the mean, standard deviation, 25th percentile, median, 75th percentile, root mean square error, and mean
absolute error of the parameter estimates over 100 simulations.

Under the first naive approach, the model estimated is Ui,s = Xsβx + εi,s. The parameter

estimate and standard deviation are in Table 2. It is clear that βx is biased, as it is almost a third of

the real value, and it has a very small standard deviation.

Table 2: No Selection, no Intercepts

true mean std. dev l.q. med h.q.
βX 3.00 1.136 0.064 1.087 1.136 1.180

The table reports the mean, standard deviation, 25th percentile, median, and 75th percentile of the parameter estimates
over 100 simulations.

An initial thought would be to include alternative specific intercepts. Indeed, when the variance

of the cost shock is small, it is nearly the same as a school specific intercept. When the cost shock

variance is precisely zero, all individuals have the same cost shock, and the model appears the

exact same as a school specific intercept. In Table 3 I include school specific intercepts, normalizing

school 1’s intercept to zero. The estimate of βx remains severely biased, and the school specific

intercepts are not statistically significant. With the cost shocks distributed N(.5, 1.75), the majority

of the shocks will be positive, which lend a higher utility to alternative 3 as βη,3 is the largest β.

Because of this, when I estimate the model with alternative specific intercepts, it has to explain

more individuals choosing alternative 3 with a higher intercept as the X coefficients are similar

across the options. These estimates are far from the true process, and including school specific

intercepts do little to alleviate the bias.

II. Policy Analysis

Once the parameters are identified, it is possible to conduct the following counterfactuals:

• Adding a new school



Michael Shashoua • 17

Figure 3: The Deviation from the Truth of βη,3

• Removing schools

• Changing the characteristics of existing schools

• Changing the school capacity/probability of admission for certain groups

These counterfactuals are not able to be performed without endogenous entry. It it generally

unrealistic to assume that the population that applies to the mechanism is the same that applies

under all counterfactual simulations unless there is forced participation.

It is also possible to look at changing the mechanism or how changes to the priority score

would affect participation. Another counterfactual can detail the effect of targeted interventions

to get more students to apply. Finally, a district can gauge interest in new programs before

introducing them (a la McFadden’s (1974) BART estimation).

The counterfactual I present for illustration is the removal of the third alternative and estimate
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Table 3: No Selection, with Intercepts

true mean std. dev l.q. med h.q.
βX 3.00 1.134 0.065 1.086 1.133 1.182
β2 -0.151 0.107 -0.223 -0.138 -0.085
β3 0.200 0.147 0.091 0.184 0.313

The table reports the mean, standard deviation, 25th percentile, median, and 75th percentile of the parameter estimates
over 100 simulations.

the effects of both how many applicants leave the mechanism and what the new lists look like.

The naive approach has nothing to say on the entry or exit of individuals–it will simply suggest

that everyone that applied to the 3rd school will apply to the next highest alternative in its place.

I randomly select from one of the monte carlo simulations to estimate the parameters and

compare the truth to my estimated model and also compare it to the naive estimates. Table 4

presents the estimated effects under the counterfactual regime, both under a naive approach and

incorporating this model.

Table 4: Policy Results of Removing 3rd Alternative, Estimated vs Actual

Baseline CF Naive CF Model True Results

Applicants 829 829 606.99 604
List – % Submitted [1 2 3] – 0.12 [1 2] – 0.58 [1 2] – 0.68 [1 2] – 0.69

[1 3 2] – 0.2 [2 1] – 0.42 [2 1] – 0.32 [2 1] – 0.31
[2 1 3] – 0.08
[2 3 1] – 0.08
[3 1 2] – 0.26
[3 2 1] – 0.26

The “Baseline" column is what is observed in the data. The “CF Naive" are the estimates of removing the 3rd alternative
under the naive approach. The “CF Model" column are the estimated results of the counterfactual applying the model in
this paper, while the last column are the actual results that would occur. This generated dataset was randomly selected
from one of the monte carlo simulations.

Column 2 of Table 4 presents the baseline data. When school 3 is available as an alternative,

over 400 people chose school 3 as their top choice. Column 3 presents the naive estimates. In

particular, no will exit the mechanism under the naive approach, and in the absence of school 3,

students will now just select their next highest option.

Column 4 contains the model’s estimated impact. It uses the parameter estimates from the

baseline data, where school 3 was available, and then uses those parameters as a DGP to average

the outcome over many draws.



Michael Shashoua • 19

This model predicts that nearly 25% of the individuals will drop out, and for those that

participate, school 1 will be applied to at twice the rate of school 2. This model takes into account

students who have X values such that they participate, and others who participate just because of

the cost shock. When school 3 was removed, the expected value declined and many individuals

stayed out of the mechanism.

The true effect of removing the third alternative from the generated data is in column 5. The

model comes extremely close to the actual results because it was able to closely pin down the

parameter values. The naive approach, which is the standard in school choice literature, has very

biased estimates and cannot predict the large entry or exit under regime changes.

This section presented a simple example that did not even make use of the fact that the naive

parameter estimates are biased. Under counterfactual policies of adding a new school or changing

some characteristics of an existing school, the naive approach would suffer from both the lack of

entry and exit as well as biased preference parameters.

V. Model Extensions

In this section I discuss how the model can be adapted for use under many frameworks and

how recent methodological techniques might be applied. I focus on the following topics: Outside

options and learning, more general application behavior, a different timing of error draws, adding

exclusion restrictions, incorporating richer beliefs, leaving the pure deferred acceptance framework,

and the long term effects of regime change.

I. Allowing Outside Option

Following Kapor, Neilson, Zimmerman (2016), this model can account for students who decide

not to take the outcome of the selection mechanism.

There are then two scenarios. First, assume that the student was assigned a school that was not

his safety school. There is then an unexpected utility shock and the student can choose between

the assigned school, the safety school, or the outside option. This can explain situations where the

data contains students that apply through the mechanism yet still take the safety school, which

was available to them throughout. This also makes sense logistically as students go through the

application process for both public schools and private schools, so they might not learn their
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outside options until the end of the matching process.

Under the second scenario, the student is only assigned to his safety school. The options when

the unexpected shocks are drawn are only between the safety school and the outside option.

It is standard to allow for multiple rounds of information that explain changing opinions as the

process continues. Many school districts allow students to resubmit lists after initial matches have

been made, and this can involve students wanting to get into schools they previously rejected.11

This model can explain that behavior, which allows for richer analysis.

It is not necessary that the final shocks be unexpected, but if they are expected we would

require a certain type of behavior. In particular, once a student has paid the cost and applies

through the mechanism, he should apply to as many schools as possible. If there are three schools

with each admission probability less than 1, then we expect him to apply to all 3. If he only

applies to 1 or 2 schools, his expected utility would be strictly higher if he applied to all 3. That

is because if he were matched to a non-safety school from the mechanism, then he gets to draw

an additional error shock when considering the outside option. It is not possible to rationalize a

student’s decision to refrain from applying to as many schools as possible if he anticipates a final

shock after the mechanism assigns preliminary matches.

II. A More General Behavior of Application

A student who ex-ante decides to participate may not end up submitting an application. If

after paying the cost and viewing all the school utility shocks, he observes that the safety school

yields the highest utility, then he will just take that option and not provide any rank ordered list.

Similarly, if after observing the utilities he sees that only one school gives him a higher utility than

the safety school, then he may only rank that school.

The probability of observing a list is equal to the probability of a cost shock such that a student

participates times the probability of observing utility shocks such that the safety school is not the

top pick. This can easily be accounted for in the likelihood function. See appendix section V for

details.
11See Narita (2016) for a model with multiple rounds of application.
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III. Realizing all Errors before Entry Decision

If the entire vector of costs and errors is drawn before the entry decision is made, then the new

decision is to enter if:

V(Xi, ε)− ηi ≥ ui0 + βη,0ηi + εi,0.

Note that there is no longer an expected value term conditional on the cost draw, ηi, but rather

the actual vector of utility shocks, ε. It is not ‘expected’ in that the shocks are unknown, but

rather that the final placement is unknown. In particular, we can solve for V(Xi, ε) multiplying

the probabilities of admission times the utility values.

The major difference between this model and the one with unknown utility shocks is that no

one would pay the entry cost unless they were sure that the safety school will not give the highest

utility (conditional on the cost draw, as always).

If the individuals observe all the cost and utility shocks, then the probability that the econome-

trician observes an application can be written as

∫ ∫
1{V(Xi, ε)− ηi ≥ ui0 + βη,0ηi + εi,0} f (ηi, ε)dηidε

Where the ε is a vector, so this involves an |S|+ 1 dimension integral. The probability of observing

a list `i is equivalent to Pr(di = 1)× Pr(`i|di = 1) which can be expressed as

∫ ∫
1{V(Xi, ε)− ηi ≥ ui0 + βη,0ηi + εi,0}Pr(`i|ηi, ε) f (ηi, ε)dηidε

Where the Pr(`i|ηi, ε) is simply an accounting exercise, to see if that particular combination

will yield the highest utility.

To simulate this, you draw the entire vector of errors, and at once determine both the entry

decision and the list submitted (only if there is a decision to enter do you consider the list).

Simulating and averaging the outcomes over many draws for each student will give us probability

of entry and optimal list conditional on entry. It is just an exercise to count how many simulations

fall within each list.

It is not clear that this model is identified without very strong parametric assumptions and
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normalizations. The decision to enter could be from high utility shocks or low cost shocks, and

trying to pin down the mean of the cost shock would be difficult without an exclusion restriction.

In the next section I show how to incorporate an exclusion restriction into the model.

IV. Exclusion Restrictions

Exclusion restrictions in a school choice model are covariates which affect an individual’s decision

to enter the mechanism, but do not affect the distribution of utility. There are two ways of

accomplishing this. The first is to find some covariate, Z, that only affects the decision to enter.

The decision to enter would become

EV(Xi, ηi)− ηi + Ziβz ≥ ui0 + βη,0ηi + εi,0,

where Z does not enter into EV(·) nor into ui,0. These are covariates that mitigate the cost of entry

but do not affect the utility of the alternatives.

The second approach is to adjust the probability of admission in a way that does not affect the

utility of each option. For example, in Agarwal and Somaini (2014) the authors use the fact that

students who are eligible for free and reduced lunch face different admission probabilities and

assume that being a free and reduced lunch student does not affect the distribution of utility for

the alternatives.

In practice it is not easy to find suitable exclusion restrictions for school choice. This pa-

per establishes identification without relying on exclusion restrictions, yet they can always be

incorporated if there are adequate restrictions.

V. Richer Beliefs

Admission beliefs are a central component to school choice, and there is a recent and growing

literature that uses subjective expectations data to understand decision making behavior. While

the early literature almost exclusively assumed expectations are either myopic or rational, this

approach is problematic as almost any behavior can be consistent with a certain set of beliefs

(Manski 1993). This makes it extremely important to use accurate beliefs for performing both the

estimation and counterfactuals.
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There are many strategies for obtaining objective beliefs. They include simulating rounds of

admission and lists, looking at past years admission rates, and schools themselves publishing

expected admission rates for certain types of students. Papers can then determine if they want

to assume correct and rational beliefs, naive beliefs in which students assume they are accepted

to every school, or anything in-between. In addition they can add heterogeneity in that some

individuals are sophisticated with correct beliefs, and others are naive.12

It is prohibitively expensive to solicit the subjective beliefs of every individual who takes part in

the mechanism and those who do not. The work that has been done on incorporating expectations

data helps clarify the individual’s thought process under uncertainty.13 The approach of these

papers is to collect data on the expectations of the alternative chosen and the alternatives that

were not chosen, in addition to beliefs under counterfactual regimes. In a more recent article

Wiswall and Zafar (2014) solicit subjective beliefs both before and after an intervention in which

they provide objective information. This experiment allows them to see the updating that students

do, and, among other things, can be used to see how interventions might change beliefs.

This is an active and large area of research, so I leave studying the beliefs for future work. What

is important in this model is that any beliefs can be entered into the model and the corresponding

probabilities can be estimated. Another potential path is that if beliefs are collected on a subset

of the students, those students can be used to estimate the structural parameters of the model.

Applying those parameter estimates to the rest of the student population will allow estimation of

some bounds on their subjective beliefs.

VI. Beyond Pure Deferred Acceptance

If there existed a binding constraint on the amount of schools you could apply to, then both the

expected value and probabilities would change. The new expected value formula would be

EV(X, η) = max
a

(
∑

s
πisaE(Us)

)
, (11)

where a is the optimal list submitted, and |a| is less than or equal to the maximum amount of

12Calsamiglia, Fu and Guell (2015) have naive and sophisticated types, Agarwal and Somaini (2015) assume naive as the
baseline, He 2015 allows for heterogeneous levels of specification.

13See Manski, 2004, for a survey of this literature. In the context of schooling choices, Zafar (2011, 2013), Giustinelli
(2010), Arcidiacono, Hotz, and Kang (2011), Kaufmann (2012), and Stinebrickner and Stinebrickner (2012, 2014) incorporate
subjective expectations into models of choice behavior.
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schools that can be applied to. Let πisa denote the admission probability for student i to school s

if they apply there, and 0 otherwise.

The submitted rank order lists will also reflect this probability of admission. Truth-telling is no

longer a dominant strategy, even if the underlying mechanism is still Deferred Acceptance. In

general, once the pure deferred acceptance setting is abandoned, then admission probabilities

become important at every stage of the decision making process.

For other mechanisms beyond pure deferred acceptance, admission probabilities are taken into

account. For example, in the setting of deferred acceptance where the length of the list is restricted

to just one school, we are in the Boston mechanism. In the Boston mechanism with list size greater

than one, we once again use equation (11). This time, πisa will be the beliefs for acceptance to

school s both depending if it was listed and in what order it was listed.

VII. Long Term Effects

Following recent work by Fack, Grenet, He (2015), I can evaluate both the short-run and long-run

equilibrium effects. The short-run equilibrium effects concern immediate behavior changes when

I change some aspect of the mechanism such as removing alternatives or altering the probability

of admission. The long-run effects take into account both the changes in the mechanism, and the

changing covariates of schools as the population that attends it changes.

For example, if a school decides to guarantee admission for low-socioeconomic students, I

can estimate how the applications decisions this year would change. In addition, I can link those

decisions to changing population demographics at the school and iterate forward to see how the

student body and application decisions might change over time.

VI. Conclusion

A fundamental step in the empirical analysis of school choice models is accounting for selection

bias. There are innate differences between the students that enter these school choice mechanisms

and those that abstain. Without accounting for the selection aspect of school choice, the parameters

may be biased and the analysis can be misleading.

This paper presented a simple, yet generalizable model of school choice with endogenous

selection. The monte carlo study showed how not accounting for selection can severely bias the



Michael Shashoua • 25

estimates and the estimated counterfactual results can be far from the truth. Almost the entire

school choice literature can be viewed through this selection model, and it is necessary to consider

school choice from a larger perspective, not just from those that provide applications.

There are many extensions this model can take. In section V I outlined some current branches of

research and how to apply the selection model to specific scenarios. Probably the most important

and interesting extension is applying correct beliefs to these models, which will also affect the

results. Modeling both selection and beliefs requires additional data which is not part of the

traditional school choice framework. This analysis is necessary to get a more complete view of the

true decision making process of individuals in school choice.
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A. Appendices

I. Monte Carlo Details

The monte carlo in section IV contains the following primitives. There are three alternatives, with

the probability of acceptance: P1 = .2, P2 = 1, and P3 = .9, where school 2 is the safety school.

The utility is specified as:

Ui,s = Xi,sβx + ηiβη,s + εi,s

with βX = 3, βη,1 = 0, βη,2 = −.3, and βη,3 = 3.1. The cost shock η ∼ N(.5, 1.75), and εi,s is

distributed T1EV. The covariates are distributed independently with Xi,1 ∼ N(2, 5), Xi,2 ∼ N(2, 5),

and Xi,3 ∼ N(1, 5).

Each simulation contains 1000 students, and I view for every student i: Xi,s for s = {1, 2, 3},

the decision to enter di, and if di = 1 I also observe the full ranked list of schools 1, 2, and 3.

I repeat the simulation with a new draw of X, η, and ε for each simulation and I report the

results.

The counterfactual is performed by randomly selecting one of the 100 monte carlo simulations,

and treating that as the true data. I estimate the parameters of interest, and treating the estimated

parameters as the true DGP, I draw a series of ε and η and estimate the results of a regime change.

The overall estimated impact is the average across all these draws.

II. Normality Assumption on School Utility Shocks

We can repeat the above analysis with a normality assumption instead of T1EV. In the normally

distributed setting, the ηi cost shock does not directly enter into the utility, but it is correlated

with the utility error. I leave this section in the most general terms, but in practice the variance-

covariance matrix requires normalizations in order to identify this model.14

III. Second Stage

In the second stage we will only observe the students who decide to submit a rank order list. The

cost shock ηi from the first period is no longer relevant after it has been paid.

14See Train 2002 for a discussion of identification pitfalls
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The utilities from enrolling in each school s ∈ S is denoted as follows:

Uis = uis + εi,s, (12)

where uis denotes the observable utility,

uis = β0,s + Xisβx + HiβH,s. (13)

The school errors εi,s are the utility shocks from attending school s. The cost shock and utility

shocks are distributed multivariate random normal:



η

ε1
...

εS


∼ N





0

0
...

0


,



ση,η γ1 · · · γS

σ11 · · · γ1,S
...

...

σSS



. (14)

Once a student views all his school specific utility shocks in the second stage, he is tasked with

creating the list that he submits to the mechanism. The optimal list under the Gale-Shapely mecha-

nism is truth-telling, which does not require the student to consider the admission probabilities.15

Following normality, it is possible to decompose εs in terms of η:

εs =
γs

σηη
η + νs

with νs ∼ N(0, σss +
γ2

s
−σηη
− 2γs) and νs is independent of η.

We can rewrite the utility for school s as:

Uis = uis +
γs

σηη
ηi + νis

and we will note the S-length vector of unobserved utility shocks, ν, has mean 0 and variance

matrix Ωv.
15Under a Gale-Shapely Deferred Acceptance Algorithm, truth-telling is a weakly dominate strategy, and if the probability

of acceptance is strictly between 0 and 1, then truth-telling is strictly dominant. It is an simple extension to forgo the
truth-telling assumption in place of stability assumption.
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Now, conditional on the ηi, I will show how to get the probability of a certain ranking. For

illustration assume there are only 4 schools. A student ranks schools as follows: `i = 3 �i 2 �i

4 �i 1. The probability of observing that ranking is equivalent to: Pr(U3 > U2 > U4 > U1). As

we are only interested in the utility differences, this probability is equivalent to Pr(U2 −U3 <

0, U4 −U2 < 0, U1 −U4 < 0). Let Ũs,s′ = Us −Us′ .

If we denote the deterministic part of utility, uis +
γs
σηη

ηi, as Vs, then we can represent the vector

of school utility stacked 1 to 4, as Ui = Vi + νi, where νi ∼ N(0, Ωv). Define the 3 × 4 matrix

M =


0 1 -1 0

0 -1 0 1

1 0 0 -1

 .

With this matrix, the probability of the ranked alternatives becomes

Pr(`i = 3, 2, 4, 1|η) = Pr(Ũ2,3 < 0, Ũ4,2 < 0, Ũ1,4 < 0|η)

= Pr(MUi < 0|η)

= Pr(MVi + Mνi < 0|η)

= Pr(Mνi < −MVi|η),

and Mνi is distributed jointly normal with zero mean and covariance matrix MΩν M. Note

that the matrix M will change for every individual based on the preferences submitted. The

Pr(Mνi < −MVi) can be simulated by GHK. To identify the model I will have to make some

assumptions on the variance structure, because although the variance covariance matrix of S

schools will contain S(S + 1)/2 parameters, generally only [(S − 1)S/2] − 1 parameters are

identified on account of the normalizations of scale and the fact we are only interested in utility

differences.16

IV. First Stage

While we are able to simulate Pr(`i|ηi), not all values of ηi will lead to entering the mechanism.

A student will enter the mechanism if the expected value from paying the cost and entering the

16See Train section 5.6.3 for details on running the algorithm and discussion of identification.
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mechanism is higher than the expected utility of the outside option. Let Ui0 denote the utility of

student i’s safety school. Let di = 1 denote that student i submits an application. I can express an

application as

di = 1 if EV(Xi, ηi)− ηi ≥ E[Ui0|ηi]

≡ EV(Xi, ηi)− ηi ≥ ui0 + E[εi,0|ηi]

≡ EV(Xi, ηi)− ηi ≥ ui0 +
γs
σηη

ηi + E[νis|ηi]

≡ EV(Xi, ηi)− ηi ≥ ui0 +
γs
σηη

ηi,

(15)

where Pr(di = 1) can be simulated with many draws of ηi. The likelihood contribution of an

individual who submits a rank order list `i is

Pr(`i|di = 1) =
Pr(`i, di = 1)

Pr(di = 1)

=

∫ ∞
−∞ 1{EV(Xi, ηi)− ηi ≥ ui0 +

γs
σηη

ηi}Pr(`i|ηi)dF(ηi)∫ ∞
−∞ 1{EV(Xi, ηi)− ηi ≥ ui0 +

γs
σηη

ηi}dF(ηi)
,

which can be simulated as in the standard model in section III. The utility function can be

parametrized with parameters θu. The unknown parameters we want to solve for are thus (θu, Σ)

where Σ denotes the parameters in the variance-covariance matrix. The likelihood for individual i

can be expressed as:

Li(Θ, Σ) = Pr(di = 0)1{di=0}(Pr(di = 1)Pr(`i|di = 1)
)1{di=1}.

V. List is Not Always Observed

If we only observe a rank ordered list given 1) an individual paid the cost and 2) utility of safety

school is not the highest, then this would change the lists we observe in the data. In particular, we

would never see a list with the safety school ranked highest.

Let ti = 1 denote individual i’s decision to submit a list. The likelihood for that individual will

be the following:

Li(Θ, Σ) = Pr(ti = 0)1{ti=0}(Pr(ti = 1)Pr(`i|ti = 1)
)1{ti=1},
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where

Pr(ti = 0) = Pr(η is too high) + Pr(η is low enough)...

×Pr(Top Choice is safety school|η is low enough)

=
∫ ∞
−∞ 1{EV(Xi, ηi)− ηi ≤ ui0 + βη,0ηi + γ} f (η)dη . . .

+(
∫ ∞
−∞ 1{EV(Xi, ηi)− ηi ≥ ui0 + βη,0ηi + γ} f (η)dη) . . .

×
∫ ∞
−∞ 1{EV(Xi ,ηi)−ηi≥ui0+βη,0ηi+γ} exp(δ0(η))

∑k exp(δk(η))
f (η)dη∫ ∞

−∞ 1{EV(Xi ,ηi)−ηi≥ui0+βη,0ηi+γ} f (η)dη

(16)

and Pr(`i) takes the standard exploded logit form.

VI. Logit Coefficient Normalizations

If the covariates do not vary by both alternative and individual, the location of these parameters

cannot be identified in a logit model. Consider the following covariate H which only varies by

individual. I will compare the true parameters βa for alternative a = {1, 2}, with another set of

parameters β̃a = βa + c for a = {1, 2} and some constant c ∈ R. The probability of choosing

option 1 under the true parameters is

Pr(ai = 1|β) = exp{β1Hi}
exp{β1Hi}+ exp{β2Hi}

,

while under the alternative parameters,

Pr(ai = 1|β̃) =
exp{β̃1 Hi}

exp{β̃1 Hi}+exp{β̃2 Hi}

=
exp{(β1+c)Hi}

exp{(β1+c)Hi}+exp{(β2+c)Hi}

=
exp{β1 Hi} exp{cHi}

exp{β1 Hi} exp{cHi}+exp{β2 Hi} exp{cHi}

=
exp{β1 Hi}

exp{β1 Hi}+exp{β2 Hi}
= Pr(ai = 1|β)

This same proof applies for school specific intercepts, which only vary by alternative and not by

individual, by setting Hi = 1 for all i.

VII. Calculate Expected Value Fuction

To simulate the expected values, I need the utility vector δ and acceptance probabilities vector P. I

take a draw of ε of the same length as δ from the Fε(·) distribution and I order the P and δ + ε
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vectors according to δ + ε.

Finally I need to create a vector that is the cumulative product of (1− P) with a 1 placed on

top of the vector and the last element is deleted. Call this vector NP.

Assuming that with this specific draw of ε, the options are ranked 1, 2, 3, then

NP = [1, (1− P1), (1− P1)(1− P2)]
′

the expected utility for this draw of error values is thus

(δ + ε) ◦ P× NP

where ◦ denotes element-wise multiplication. I then average this over many draws of ε to

simulate the expected value.

For a numerical example, consider a draw of ε such that δ + ε = {6, 7, 5} and P = {.6, .3, 1}. I

will re-order both vectors such that δ + ε = {7, 6, 5} and P = {.3, .6, 1}.

Next construct NP = {1, (1− .3), (1− .3)(1− .6)} ≡ {1, .7, .28}. Then (δ + ε) ◦ P = {7× .3, 6×

.6, 5× 1} ≡ {2.1, 3.6, 5}.

Finally, to get (δ + ε) ◦ P × NP I take the inner product of {2.1, 3.6, 5} and NP, which is

2.1× 1 + 3.6× .7 + 5× .28 = 6.02. The expected utility will then be the average over many draws

of ε.
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